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An analysis is presented that is appropriate to three distinct phases in the 
temporal development of the flow past a semi-infinite vertical plate whose 
temperature is suddenly changed from that of the surrounding fluid. These are 
the initial stage when a one-dimensional solution desoribes the flow, then a local 
solution which describes the early stages of the departure from this, and finally 
an asymptotic solution which describes the manner in which the final steady state 
is achieved. 

1. Introduction 
The steady free convective flow from a heated vertical plate was first examined 

by Lorenz (1881). The work of Schmidt & Beckmann (1930) showed that the 
assumptions made by Lorenz were invalid, and their definitive paper, which 
includes both an experimental and a theoretical investigation, forms the basis 
(see Ostrach 1964) for studies of the classical problem of steady free-convection 
boundary-layer flow past a semi-infinite vertical plate. In this paper we consider 
certain features associated with the development of this steady flow from a state 
of rest. 

The unsteady flow which arises when the temperature of a semi-infinite 
vertical plate is suddenly raised to a uniform and constant value which exceeds 
that of the ambient fluid may be qualitatively described as follows. At a finite 
distance from the leading edge, the flow initially develops as if the plate were 
infinite in extent. Owing to the wavelike nature of the unsteady boundary-layer 
equations, a finite time elapses before the leading edge influences the flow 
development at  that station; thereafter a transition to the classical steady-state 
solution takes place. This description of the flow was first given by Siegel (1958) 
and applies equally to the case when the flow is induced by introducing more 
general thermal conditions on the plate a t  the initial instant. Siegel, using an 
approximate method based upon integrated forms of the governing equations, 
analysed the situations in which there is a sudden change in temperature or 
a sudden change in heat flux at the plate. 

The flows under discussion have been the subject of experimental investiga- 
tions, and since density gradients are an essential feature of these flows 
interferometric techniques have been employed to  visualize them. Published 
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interferograms by Goldstein & Eckert (1960) and by Gebhart, Dring & 
Polymeropoulos (1967) confirm the overall features of the unsteady free- 
convection flows described above. More detailed comparison by the former 
authors between experiment and the theory of Siege1 shows qualitative agree- 
ment. In a series of papers Gebhart (1961, 1963a, b, 1964) uses approximate 
methods to analyse the flow development for a variety of initial conditions, and 
emphasizes the importance of a physically realistic surface condition. Details of 
the analysis and of its agreement with experiment are readily accessible in 
Gebhart (1972)) a paper that includes a discussion of the leading-edge effect. 

In the present paper we consider the unsteadiflow which arises following a step 
change in wall temperature. This idealized model enables us to reduce the number 
of independent variables from three to two, and therefore has the limitations of 
any similarity solution. At present a complete analysis even of this idealized 
problem is not possible. Our aim, as a step towards such an analysis, is to examine 
certain key features which we expect to be essential to a complete understanding 
of the problem. Specifically, we examine in 3 2 the initial phase, in 3 3 the initiation 
of the transition from this initial phase and in 3 4 the final decay to the classical 
steady-state flow. The initial development of the flow which, as already indicated, 
corresponds to the flow past ;I suddenly heated infinite plane has been given 
previously by Illingworth (1950). The manner in which the flow departs from this 
initial one-dimensional form has certain features in common with the flow past 
a semi-infiniteplate which is set in motion impulsively in its own plane. That 
problem has been analysed by Stewartson (1951, 1973) and numerical solutions 
of it have been obtained by Hall (1969) and Dennis (1972). The analytical and 
numerical results, where comparable, are in accord. In  that problem, also, 
departures from the one-dimensional, or Rayleigh, solution commence at  any 
station after a finite time. The minimum time which elapses before such depar- 
tures take place is the time taken for a signal to travel from the leading edge. It 
can be shown that the influence of the leading edge is first brought to a given 
station by the signal that is convected along the boundary layer by the fluid 
moving fastest, relative to the plate, a t  each station. For the impulsively started 
plate, the fastest relative speed in the boundary layer is the free-stream speed, 
i.e. the constant speed of the plate itself. For the problem under consideration 
we apply the same arguments to calculate the critical time at  which departures 
from the one-dimensional solution first begin, and we note that the maximum 
relative speed occurs inside the boundary layer and is time-dependent. The 
difference between this argument and that of Goldstein & Briggs (1964) will be 
explained in $2.  

In the present problem a similarity reduction of the governing boundary-layer 
equations is available and a t  the critical value Toof the time-like variable7, defined 
below, departures from the one-dimensional solution manifest themselves 
through an essential singularity. The local analysis which we employ in the 
neighbourhood of 7 = T~ leads to an eigenvalue problem, and the departures 
from the one-dimensional solution are undetermined t o  within a multiplicative 
constant. This is to be expected since in the similarity formulation disturbances 
can propagate, for T > T,,, in the direction of either positive or negative T. Thus 
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the indeterminacy arises since no conditions a t  r = co, which for any finite time 
corresponds to the leading edge of the plate, are imposed upon our local solution. 
Likewise for r >  1, where we examine the final decay to the steady state, a 
perturbation analysis yields an eigenvalue problem, and disturbances to the 
steady-state solution remain undetermined to within an arbitrary constant. In  
this case, of course, the indeterminacy arises since the conditions at r = 0 are 
not invoked. The analysis for 7 w T~ and r % 1, although significantly different 
in detail, is carried out in the same spirit as that given by Stewartson (1973) and 
Watson (in an appendix to Dennis 1972) for the impulsively moved plate. We 
conclude this section by deriving the similarity form of the governing equations. 

In  our mathematical description of the problem we use the boundary-layer 
equations and assume that our fluid is a Boussinesq fluid. We choose (2 ,  g )  as 
co-ordinates along and normal to the plate with (ap/ay, -@/aZ) as the corre- 
sponding components of velocity. The origin of co-ordinates is assumed to be on 
the leading edge of the plate and the gravitational field g is equal to - gi, where 
i is the unit vector in the X direction. The temperature T takes the values T, and 
T, at the wall and in the ambient fluid respectively, and we assume that T, > T,. 
A characteristic velocity for this free-convection situation is 

u = [g/WTw - T,)l4 
where /3 is the volumetric coefficient of thermal expansion and L a typical length. 
If we define the Grashof number Gr = /3gL3(Tw - T,)/v2, where v is the kinematic 
viscosity of the fluid, then our use of the boundary-layer equations is only 
justified if Gr $ 1. Following Ostrach (1 964) we introduce dimensionless variables 
appropriate to this situation as 

x = z/L, y = Gr@/L, t = Ut/L ,  

@ = Gd$l UL,  T = T, + (T, - T,) 8, 

where l denotes time. If K is the thermal diffusivity of the fluid then the 
Prandtl number CT is equal to v/K. 

Under the assumptions we have made, the governing equations may be 
reduced to similarity form by writing 

@ = XY(7 ,7 ) ,  8 = 71, (1) 

where 7 = y/xi, r = t/x*, (2) 

and f and 8 satisfy the equations 

together with 
f = af/ar = 0 at 7 = 0 for all 7, 

8, af/av+O as r+oo for all 7, 

8 = 1  on q = O  for r > O ,  

8 = af/av = 0 at  7 = 0 for 7 > 0. 

(4) 
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If in (3) we neglect derivatives with respect to r and write f (q ,r)  = fo(q) and 
8(r,r) = O0(q) then we recover the classical steady-state equations for free- 
convection flow over a semi-infinite flat plate discussed at  the beginning of this 

for which fo(0) = f A ( O )  = 0, 8,(0) = 1, fh(oo) = 8,(oo) = 0. (6) 

For simplicity we henceforth restrict our attention to cr = 1. If u $. 1 the 
conclusions are similar but the analysis is more complicated. 

2. The initial development: r < ro 
As with any impulsive boundary-layer flow, which is realized in the present 

ease by suddenly giving the plate a t  t = 0 a finite and constant temperature 
exceeding that of its surroundings, there is an initiation period in which y/Jt, 
which is equal to y/,/r, is an appropriate independent variable. Accordingly for 
the initial development of the solution we find it convenient to use independent 
variables (Q r),  where c = rI24r1 (7)  

and we write f ( q ,  7 )  = 27@(C, 71, q q ,  7) = @(<, 4. (8) 

It follows from (3) that the dependent variables F and 0 satisfy the equations 

If in (9) we neglect derivatives with respect to r and write P(5, r )  = Fo(C) and 
@(Q 7) = Oo(<) we recover the classical one-dimensional equations which, 
subject to 

admit the solution 
} O,(O) = 1, O0(c0) = 0, 

Pb(O) = F;(.o) = 0, 

FA(<) = 2<(e-Ca/nt - gerfc {), 0, = 1 - erf 6. (10) 

The corresponding solution with u + I was also given by Illingworth (1950). The 
solution (10) describes, exactly, the flow past an infinite plate whose temperature 
is raised instantaneously to a value above the ambient temperature. It can, at 
most, describe only the initial phase of development of the flow past a semi- 
inJinite plate since it does not satisfy the boundary conditions at  x = 0, and thus 
contains no information about the leading edge. This is analogous to the situation 
in the problem of the impulsively started flat plate studied analytically by 
Stewartson (1951, 1973) and numerically by Hall (1969) and Dennis (1972). In  
his earlier paper Stewartson showed that the one-dimensional, or Rayleigh, 
solution is appropriate until, at any station, the boundary layer becomes aware 
of the existence of the leading edge. The time at  which this occurs is calculated 
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on the basis that the fastest moving disturbances are transmitted with the free- 
stream velocity at the edge of the boundary layer, and then diffuse instantane- 
ously across this layer. In  his later paper Stewartson (1973) found the eigen- 
solutions which describe the departure of the flow from that given by the Rayleigh 
solution, and compared the skin friction and displacement thickness calculated 
from the first eigensolution with the numerical results of Dennis. The situation in 
the present problem is similar, and we also argue that the fastest leading-edge 
signal travels with the maximum speed in the boundary layer, which in this case 
occurs at an interior point. It follows then, from (1) and (S), that the time which 
elapses before a given station along the plate first becomes aware of the presence of 
the leading edge is given by 

7 = To = [2/FAmaXI4 (11)  

and for r < ro the appropriate solution is that of (10). 
Equation (11) can also be regarded as giving the maximum penetration 

distance of the leading-edge signal at any fixed time. It leads to a slightly greater 
maximum penetration distance than does the argument of Goldstein & Briggs 
(1964). Essentially they write for this distance 

whilst we write 

where in both cases the maximization is with respect to y. The latter assumption, 
which leads to (11), is reinforced by an examination of equations (9). They are 
parabolic in nature and whether disturbances propagate in the direction of 
increasing or decreasing r is expected to be determined by the sign of 1 - &T2aF/ag. 
Since, for r < ro, we have aF/a[ = FA it follows that at r = ro this coefficient 
vanishes at  one point in the boundary layer. Thus to extend the solution to 
larger values of r it  is necessary to take account of the boundary conditions at  
r = co, since propagation in both directions is now possible. Since 7 = co corre- 
sponds to x = 0 when t is non-zero, we see the justification for the interpretation 
of x4ro as the time at which the leading-edge signal reaches x. 

A possible solution of (9) is of course P(c,r) = Fo(c), 19(&r) = Oo(g) for all r. 
This solution cannot be unique, however, since it implies that the coefficient 
1 - $r2 aF/a< is negative for some g for all r > ro, and this enables boundary condi- 
tions to be imposed a t  r = co. The non-uniqueness is accounted for by eigen- 
solutions which first make their appearance at r = ro and are the means by which 
the leading-edge makes its presence felt. 

These eigensolutions, whose coefficients are determined by the boundary 
conditions at r = 00, are similar to those found by Stewartson (1973) for the 
impulsive plate problem. They exhibit an essential singularity at r = ro, at 
which point all derivatives are zero. This is as it should be since for 7 < ro the 
solution is independent of x. Stewartson found it necessary to divide the 
boundary layer into four separate regions, but in the present problem the con- 
figuration is less complicated and we require only three. 

x p  = stma. [u(y, tl)l at,, 
0 
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3. The transition period: 0 < r -ro  < 1 

To determine the analytic form of the eigensolutions required for the stage 
where the flow starts to depart from the one-dimensional solution given by (lo), 
we write 

(12) 

< 10,1 in the transition stage so that 

F ( L  7 )  = F o K )  + 2i;(5,7), e(& 7 )  = @ o ( O  + %(C, r), 

in (9), and assume that IFl[ < IFo] and 
products of these small perturbations may be ignored. We thus obtain 

and solutions of (13 )  and (14) are required such that 

F1,0,+O as r+ro; 
PI = 0, = aFl/ag = 0 on 6 = 0;  01, aF,/ag+O as <+m. 

It will emerge that to solve (13) and (14) subject to (15) in the neighbourhood 
of r = ro it is necessary to divide the boundary layer into three separate regions. 
The main region, or middle layer, is centred on the point 5 = co, where P;(<) has 
its maximum, and is of thickness O [ ( T - T ~ ) * ] .  This region determines the eigen- 
values and the form of the essential singularity, and the inner and outer layers 
are required merely to adjust the solution so that it can satisfy the boundary 
conditions at  < = 0 and at  g = 00. The importance of this middle layer is not 
unexpected in view of the argument presented earlier. Physically it is a region in 
which diffusive effects are of prime importance in the response, by the boundary 
layer, to the arrival of the leading-edge signal. 

The middle  layer 

It follows from (10) that, near g = <,, 

F X )  = ~ 0 - ~ ~ ~ ~ - ~ 0 ~ 2 - ~ 2 ~ ~ - ~ 0 ~ 3 + ~ ~ ~ ~ - ~ 0 ~ 4 1  (4 > 0)) 
W C )  = -ao-al(6-go:0)+0[(g-Y0)21, 

where the constants Ai and ai are such that 

r iA0 = 2, a, = -2g0a0, A ,  = - ~ ( a O + < o A l ) ,  (17) 

and their numerical values when required are calculated from (10) and (11) .  
Thus with 

7 = TO+T, 6 = C0+z, (18) 

the leading terms of ?-(I -972F;) are +A1riz2- 2T, which indicates that since 
0 < T < I the appropriate variables are T and Y ,  where 

Y = z/TJ. (19) 
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We now write 

where y, 6, c and d ( c  > 0) are constants t o  be determined, and retain the leading 
terms in (13) and (14). This gives 

(21) 

(22) 

*B; - C(+A17! Y2- 2) B; + CA17; YB, = - T++M0, 

*B:-C(&~,T;  Y 2 - 2 ) 8  0 -  - - & X X , ~ ~ T ~ - * - ~ G ~ .  
- 

Since the terms on the right-hand sides of (21) and (22) must not be large com- 
pared with those on the left-hand sides of the corresponding equations, it is 
necessarythataf 1 Q y Q 6++. I fy  = 6+ 1 theright-hand sideof (21)isnegligible 
and so Go can be determined without reference to (22), and the equation to be 
solved for go is then $p;-c($A17; Y2 -  2 ) 8  - -$cao7~Go.  If y = S++, equa- 
tion (22) yields a homogeneous equation for H, and (21) a non-homogeneous 
equation for do which has the term - go on its right-hand side. If 6+ 1 < y < a+ 4 
equations (21) and (22) yield homogeneous equations for Go and respectively. 
From these various possibilities, that which determines the leading eigen- 
function will be the one which assigns the lowest possible value to c. To investi- 
gate the possibilities we first consider the homogeneous equations, which with 

0 ,  

Y = b 2 ,  Go( Y )  = Go(Z), go( Y )  = Ho(2),  (23) 

where b4 = ( S C A ~ ~ $ - ~ ,  a = 8cb2, (24) 

G; - ( &Z2 - a )  G; + iZG0 = 0, (25) 

H,”-($22-a)Ho = 0. (26) 

become 

The solutions of (26), the parabolic cylinder functions, are exponentially large 
either as Z+-co or as Z-tco unless a. = Q, 8, ..., in which cases there is one 
solution of the form PJZ)  exp ( - $Z2), where Pa is a polynomial. It can be shown 
that solutions of (25) satisfy 

where w(s)  satisfies the confluent hypergeometric equation 

sw”+(;-s )w’+(+a-~)w = 0. (28) 

We deduce therefore that the solutions of (27) are Z2 - 4a together with two 
functions both of which are exponentially large either as Z+-co or as 2+co 
unless a = - +,#, ..., or a = Q, 3, ... . The necessity to match the solution with 
a solution in the inner layer precludes the possibility that Go(2)cc (Z2- 4a); 
consequently a is not unrestricted. The negative value of a in the above sequences 
is unacceptable since we have assumed that a > 0 in the derivation of (25) 
and (26). 
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Thus the lowest possible value of a is &, with y = S+ 8; this gives 

H,(Z) = e-fza (29) 

(30) and 

The complementary functions of (30) are Z 2 - 2  and two functions which are 
exponentially large either as Z+ - 00 or as 2-+00. The solution of (30) we shall 
take is 

G: - ( &Z2 - &) G; + QZG, = - 4ba e-@'. 

G,(Z) = - 27i-4b3[~-U e-kza + (&Z2- 1) {erf (&Z) + l}], (31) 

which has the asymptotic forms 

G,(Z)  -(8b3/Z)e-kz2 as Z-t-00; G,(Z) - - Zn*b3Z2 as 2++00. (32) 

This solution therefore decays exponentially towards the wall, but increases 
algebraically at the outer edge of the region under consideration. A reversal of 
this behaviour can be realized by the addition of a suitable multiple of Z2 - 2,  but 
it emerges that it is then not possible to match the solution with that appropriate 
to the inner layer. 

Since a = 4 it follows from (24) that 

C = &7iA1 = 0.656, (33) 

and to find the value of y wereturn to (20)  and calculate Gl( Y ) ,  Bl( Y )  and B2( Y ) .  
The results are that d = 0 and 

&? 2 =  2.452, * '  4 0 A l  6 4 A ,  0 y = 2+552+9C -+- (34) 

with C,, A ,  and A ,  defined in (17). 
Although the solutions (29) and (31) are exponentially small as 2-t-00 they 

do not in fact satisfy the boundary conditions on the wall. Nor does (31) allow 
the condition aF,/a[+ 0 as [+ co to be satisfied. Thus further solutions valid in 
inner and outer layers are required, and we first consider the outer layer in 
which 5 = O(1). 

The outer layer 
In  the outer layer we write 

Fl(C, 7) M Ty-l e-dT S([), a,([, 7) M T A  e-c/T #(5),  (35) 

where the exponent y - 1 in the expression for Fl follows from (32) in conjunction 
with ( Z O ) ,  and A, which is to be determined, must be such that h > y - 4 as H,(Z) 
given by (29) is exponentially small as Z +  co. Then near 7 = 7, the leading terms 
of (13) and (14) are 

~ o ( 1  -+T~F;)  $9' +&7iF$ 9 = T'-7+337 

CT,( 1 - -$T~PL) T"Y+l%+ 4c.i 9 = 0. 
(36) 

(37) 

(38) 

Thus, to avoid a contradiction, we require h = y-  1 and it then follows that 

S(5) = B( 1 - &$F;), S ( 5 )  = - ~ B T ~ O ; ,  
where B is a constant to be determined, and the boundary conditions as [+m 
are now satisfied. From (38) we have, near 5 = c,, 

%) = &BA&(C- COl2+ ON'- S K )  = W7ia0+ WC- &)I, (39) 
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and by matching with (31) the unknown constant B in (38) is determined from 

QBA17; = - 2 d b .  (40) 

It has been verified that with this choice for B the term 2([) in (38) matches 
with the term Rl( Y )  which arises in the solution for 0, in the middle layer. 

The inner layer 
In the inner layer c = 0(1)  but aFl/aC B Pl and similarly for 0,. In (13) and (14) 
we write, for T < 1, 

aF,/ac M Ty-&&(C)  e-flc)lr, 0,(C, T )  w TY-+R(C) e-P(c)’T, (41) 

where we have anticipated the powers of T required to match with the solution 
(20), (29), (31) of the middle layer. For Pl(c7~) we find it sufficient to use the 
asymptotic relation 

Equating the terms of orders TY-8 and TYG in (13) and (14) respectively we 
obtain, from each equation, 

whilst the terms of orders T Y t  and T y - 4  lead to 

To( 1 - &Tip;) P = $P”, (43) 

T,( 1 - 4T;F;) (y - 4) Q + (1 -+Tip;) P& - &T;P;I(P&/P’) 

+ 4CI”Q + t[(P’&)’ + P’Q’] = R (44) 

and 7,( 1 - 97E.F;) (7 - 3)R. + (1 - 87;B;)PR + icP‘R 
+ a[(P’R)’+P’R’] = 0. (45) 

There are two solutions Pl(C) and P2(5) of (43) with the same value at  6 = 0, and 
to effect a match with (20), (29) and (31) as 6 + Q  and Z-t-co we take 

P(C) = Pl(C), 

where 

Since it follows from (16) and (24) that near C = Co 

p1(<) = c+  K- C ~ : , , W I  +OW ~ ~ 3 1 ,  (47) 

we see that both terms, -c/T - tZ2, in the exponent of (20), with H, as in (29) 
and Go as in (31), are matched at this stage. 

The corresponding solutions of (44) and (45) which enable us to complete the 
matching procedure with (20), (29) and (31) are 

Rl(C) = QPl(c)-ay+a(lP~(C)l)-aexP [ -4P- 2 s  6 (1 -17%Fx1))+d5;] P(6 1 (48) 

and &i(O = 2(C- Co)Ri(C)/P1(5), (49) 

0 Pl(C1) 

where C is a constant which may be determined from the matching process. 
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To satisfy the boundary conditions at the wall it  is necessary to consider the 
other solution of (43), P2(c), for which P,(O) = Pl(0). This is given by 

and associated with it are corresponding functions Q2(6)  and R2([) .  Thus we 
have a second solution of the form (41) available. To satisfy all the conditions 
at the wall a third solution is required, and for this we take a readily obtained 
solution of the linearized equations (13) and (14) of the form 

(51) } FlK, 7 )  = .FA(6) L(7) + "71, %(c, 7 )  = O X )  L(7), 
with 27L' + L + 73M' = 0, 

where L(7) is arbitrary. If we choose L(7) = Tr+* exp [ - Pl(0)/T] we may satisfy 
the three boundary conditions at  the wall using the three solutions now available, 
Except at  5 = 0 the latter two solutions are exponentially smaller than the 
original solution involving PI([), and so for 5 > 0 are negligible in comparison. 

We are now in a position to estimate the departure from the one-dimensional 
solution, close to r = 70, of the displacement thickness, the skin friction and the 
heat transfer as predicted by our lowest eigenfunction. The principal contribu- 
tion to the displacement thickness 8* may be calculated from the outer-layer 
solution, and from (35) we obtain 

log&* = -O.656/(7-~0)+ 1.45210g(7-7~)+O(1). (52) 

The dependence on 7 of the logarithms of the perturbation skin friction and heat 
transfer near 7 = 70 follows from (41) and is 

( 5 3 )  
- 1-360/(7 - + 0.952 log (7 - 70) + O( I), 
- i * 3 6 0 / ( ~  - 7 0 )  - 0.048 log (7 - + O( I ) ,  

respectively, since Pl(0) = 1.360. 

4. The final decay: 7 9 1 

We conclude by investigating the departures from the steady-state solutions 
of (5) and (6) as r --zoo. In  other words we study the final decay in the evolution of 
the solution to its steady state. We write 

f (7 ,  7) =fo(y) +fi(r, 7 ) ~  0(7,7) = eo(7) +@i(7, 71, (54) 

where fo and 0, represent the steady-state solutions satisfying ( 5 )  and (6), and 
assume that l f i l  < I f o ]  and \ell' < 10ol. If we substitute (54) into (3) and neglect 
products of small quantities then we find that fl and el satisfy 
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together with 

(56) I- 
8,(q, fl(17, 7 )  7 )  = = T*(r) T*W {Go(r)  (FO(17) +r-lG,(V) + T - l m V )  + + O(r-%} O ( r 2 ) ) ,  

fl = af,/ar = = o on 7 = 0,  
el, af,/ar+O as r+co and as T-+GO. 

We now seek solutions of (55) and (56) in the form 

(57) 

where we assume that T*(?) is exponentially small as r -+ GO but is otherwise, as 
yet, undetermined. Substituting (57) into (55) we find that the leading terms 
satisfy the equations 

and these equations readily admit the solutions 

f ;F;-f;Fo = 0 ,  f ;Bo-8;Fo = 0,  

Fo = po f;, 8, = Po@;. (58) 

However, with Fo and 8, determined in this way we see from (57) thatfl and 8, 
satisfy the conditions as 7, r + GO but violate the conditions at 7 = 0. We therefore 
require an inner layer in which adjustment can take place. Now the boundary 
conditions show that 8, must have a point of inflexion and we note that, since 8; 
is monotonic, this must be in the inner region. If we assume that the solution 
structure in the inner region is determined by the highest derivatives in r and 9, 
and our discussion below based upon this assumption is self-consistent, then it 
follows that O1 possesses a point of inflexion when rf; = 2 which is equivalent to 
r y  = O( 1) when r 9 1.  Accordingly we define a new variable 

7 = 717, (59) 

and if fo = 

constants, then equations (55) become, with 
+ O(y3), 8, = 1 +,@I + O(q2) as 7 + 0, where a and ,8 are known 

fl(% 7 )  = fAS, 4, 4(17,r) = el(% r) ,  

By using (58) expanded for small 17 and using (59), we see that in order to effect 
a match with the outer solution the solution in the inner region must exhibit the 
asymptotic behaviour as i j  -+ GO 

- 
j;, N 2aPo~*(7)7 /7 ,  8, N PPoT*(r), (61) 

(62) 

which suggests that in the inner region 

f,@, 7 )  = T*(r) r-1(S1(q) +r-l=F (- 

el(% 7 )  = T*(4  ( i J O ( 7 )  + +$AS) + O(r-2)). + o(r-2”3> 

- 
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Substituting for f, and 8, in (60) we find that the balance of terms which is 
necessary if the inner and outer solutions are to match, and the diffusion terms are 
to play the role required of them in enabling us to satisfy the conditions a t  the 
wall, requires that T* must satisfy 

where a, is a constant which will be determined later. With this behaviour for T* 
we find that 9, and $o satisfy 

(64) 
F[ - a,( 1 - a 7 ) 9 ;  - 

r$o - a,( 1 - a?) $o - = 0. -It 

Further considerations show that we may, in fact, without loss of generality take 

thus (66) 

and the constants a,, a2, a3 and a4 remain to be determined. The first of equations 
(64), which satisfies g , ( O )  = g ; ( O )  = 0 together with the matching condition, 
represents an eigenvalue problem for the first of the unknown constants, a,, 
in (66). This was anticipated from our discussion in 5 1. If we write 

T* = ra4 exp {&r3 + 4az7z + a37>, 

then the first of equations (64) becomes 

which gives 

with = 0 where to = - A,/a, and so for a non-trivial solution Eo must 
satisfy Air ([) = 0. The smallest value of 161 which satisfies this equation yields 
the dominant eigenvalue and this is to = -1.019, which in turn gives 
a, = - 1.058a2. The remaining constant C, in (69) is related to the constant Po 
in the outer solution (58) by the matching criterion. We obtain as ?j+m 

g,(?j) N 0.809C1h1~, (70)  

and consequently, from'(61), (62) and (70) we determine the relationship between 
Po and C, as ap0 = 0.404C1h,. The solution of (64) for $,, may now be determined. 
The solution which satisfies the condition $o(0) = 0 and the matching require- 
ment is simply 

I n  principle a study of the higher order terms in (62) may now be made which 
will yield values for the remaining constants in (66). I n  practice the analysis is 
formidable, although one further term has been considered by Andrews (1969), 
who finds that a2 = - 0.9268. 

- 
= &(PI.) F;cr,. (71)  
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In  conclusionlwe note that in this final decay to the steady state the perturba- 
tion displacement thickness, skin friction and heat transfer are all dominated 
by the term exp (4a173), showing that as T -+ 00 the steady-state solution is 
rapidly achieved. 

We wish to thank Professor K. Stewartson for a helpful discussion on this 
problem. 
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